Computer Graphics

8 - Lighting

Yoonsang Lee Hanyang University

Spring 2023

Outline

- Visible Color of Objects
- Reflection of Light
- Phong Illumination Model
- Polygon Shading
 - Face / Vertex Normal
 - Flat / Goraud / Phong Shading

Visible Color of Objects

Visible Color of Objects

- When light strikes an object, some of the light is absorbed by the object, and some is reflected.
- The color of the object is determined by the **wavelengths of light that are reflected.**
 - For example, a red object appears red because it reflects primarily red light and absorbs other wavelengths.
- Which color is absorbed or reflected is an **inherent property of a surface.**

Visible Color of Objects

• So, quite obviously, the visible color of an object is affected by the color of the light source.

Room for one colour, Olafur Eliasson

Hanyang University CSE4020, Yoonsang Lee

* This image is from https://olafureliasson.net/artwork/room-for-one-colour-1997/

Computing Visible Color of Objects

- In CG, color is usually represented by R, G, B components.
- Light color: The intensity of each color component emitted by a light source.

- e.g., $(1, 1, 1) \rightarrow$ white light source

- Material color: The percentage of each color component reflected in incident light.
 - e.g., $(0.5, 0, 0) \rightarrow$ half red is reflected, green and blue are all absorbed
- Element-wise multiplication of the light and material RGB color values is a good approximation of the surface's light reflection.

Computing Color of Objects: Examples

- For example,
- Material color of a surface is (0.5, 0.8, 0.2).
 - This surface reflects 50% of red, 80% of green, and 20% of blue in incident light.
- If light color is (1.0, 1.0, 1.0),
- Visible surface color is (0.5, 0.8, 0.2). (element-wise multiplication)
- If light color is (1.0, 0.0, 0.0),
- Visible surface color is (0.5, 0.0, 0.0). → Darker red surface.

Reflection of Light

Reflection of Light

- Light can be absorbed(흡수), emitted(발산), scattered(산란), reflected(반사), or refracted(굴절) by objects.
- Scattering and reflection are the main factors in the visual characteristics of an opaque object surface.

- such as surface color, highlight on surface

- Types of reflection:
 - Diffuse reflection
 - Specular reflection
 - Ideal specular reflection
 - Non-ideal specular reflection (a.k.a. Glossy reflection)

* In computer graphics, both scattering and reflection are often referred to as "reflection" Hanyang University CSE4020, Yoonsang Lee

Diffuse Reflection

- : Scattering specific light spectrum in all direction
- \rightarrow Determines surface color
- View-independent

strongly scatters magenta wavelengths

scatter all wavelengths with roughly equal strength

(scatters a little)

Diffuse Reflection - Lambert's Cosine Law

• The **reflected energy** from a small surface area is proportional to the **cosine of the angle** between **incident light direction** and the **surface normal**

$$I_{reflected} = I_{incident} cos\theta$$
$$= I_{incident} (\hat{\mathbf{N}} \cdot \hat{\mathbf{L}})$$

 $I_{reflected}$ intensity of reflected ray $I_{incident}$ intensity of incident ray

normal to the reflection surface at the point of the incidence

normalized light direction vector

Hanyang University CSE4020, Yoonsang Lee

Ñ

Diffuse Reflection - Lambert's Cosine Law

Visualization of Lambert's law in 2D

* This slide is from the slides of Prof. Andy van Dam (Brown Univ.) http://cs.brown.edu/courses/csci1230/lectures.shtml

Ideal Specular Reflection

- : Mirror-like reflection of light from smooth, polished surface
- \rightarrow Generate mirrored images

• View-dependent

Ideal Specular Reflection - Laws of Reflection

- $\hat{N}, \hat{L}, \hat{R}$ lie in the same plane
- $\theta_r = \theta_i$
- \hat{L} and \hat{R} are on the opposite sides of \hat{N}
 - $\hat{\mathbf{N}}_{}$ normal to the reflection surface at the point of the incidence
 - $\hat{\mathbf{L}}$ normalized indicent ray direction vector
 - $\hat{\mathbf{R}} ~~ \underset{vector}{\text{normalized reflected ray direction}}$

Non-Ideal Specular Reflection (a.k.a. Glossy Reflection)

- : Reflection on shiny & glossy surface, but not as smooth as a mirror
- Reflected rays are "spread out" due to surface roughness

- \rightarrow Generate bright highlights
- View-dependent

Reflection of General Materials

• Many materials' surface have both diffuse reflection and (non-ideal) specular reflection.

Diffuse Reflections

Specular Reflections

Total Scattering Distribution

Quiz 1

- Go to <u>https://www.slido.com/</u>
- Join #cg-ys
- Click "Polls"
- Submit your answer in the following format:
 - Student ID: Your answer
 - e.g. 2021123456: 4.0
- Note that your quiz answer must be submitted in the above format to receive a quiz score!

Lighting (or Illumination)

- In computer graphics, **lighting** (or **illumination**) refers to the process of computing the effects of lights.
- → Computing surface color and highlights of objects.

- One of the most commonly used "classical" illumination models in computer graphics
 - Empirical model, not physically based

Bùi Tường Phong (1942 – 1975)

- Three components:
- Ambient
 - Non-specific constant global lighting.
 - Crudest approximation for indirect lighting.
- Diffuse
 - Models diffuse reflection using Lambert's law.
 - Determine the surface color.
- Specular
 - Approximation for glossy reflection using $\cos^n(\alpha)$.
 - Computes highlights on shiny objects.

 Now we will look at how to calculate <u>each</u> <u>component of Phong illumination model</u> - ambient, diffuse, specular color - <u>at a specific location</u> on an object's surface.

- The location might be
 - a polygon vertex
 - or an interior point in a polygon (corresponds to a pixel in the film space).

Ambient Component

•
$$\mathbf{I}_a = \mathbf{l}_a * \mathbf{m}_a$$

- \mathbf{l}_{a} : light ambient color
- **m**_a : material ambient color
- \mathbf{I}_{a} : final ambient color of a surface point
- * : element-wise multiplication

• $\mathbf{I} = \mathbf{l}_a * \mathbf{m}_a$

* The images are from the slides of Prof. Jinxiang Chai (Texas A&M University): http://faculty.cs.tamu.edu/jchai/csce441_2016spring/lectures.html

Diffuse Component

- $\mathbf{I}_d = \mathbf{I}_d * \mathbf{m}_d \cos(\theta) = \mathbf{I}_d * \mathbf{m}_d (\mathbf{L} \cdot \mathbf{N})$
- L : light direction
- N : normal
 - L and N are unit vectors.
- \cdot : dot (inner) product
- \mathbf{l}_{d} : light diffuse color
- **m**_d : material diffuse color
- \mathbf{I}_{d} : final diffuse color of a surface point

• $\mathbf{I} = \mathbf{l}_a * \mathbf{m}_a$

• $\mathbf{I} = \mathbf{l}_a * \mathbf{m}_a + \mathbf{l}_d * \mathbf{m}_d (\mathbf{L} \cdot \mathbf{N})$

Specular Component

•
$$\mathbf{I}_{s} = \mathbf{I}_{s}^{*}\mathbf{m}_{s} \cos^{n}(\alpha) = \mathbf{I}_{s}^{*}\mathbf{m}_{s} (\mathbf{V} \cdot \mathbf{R})^{n}$$

- V : view direction
- **R** : reflection direction (of light)
 - V and **R** are unit vectors.
- n : shininess coefficient
- **l**_s : light specular color
- **m**_s : material specular color
- I_s : final specular color of a surface point

• $\mathbf{I} = \mathbf{l}_a * \mathbf{m}_a$

• $\mathbf{I} = \mathbf{l}_a * \mathbf{m}_a + \mathbf{l}_d * \mathbf{m}_d (\mathbf{L} \cdot \mathbf{N})$

• $\mathbf{I} = \mathbf{l}_a * \mathbf{m}_a + \mathbf{l}_d * \mathbf{m}_d (\mathbf{L} \cdot \mathbf{N}) + \mathbf{l}_s * \mathbf{m}_s (\mathbf{V} \cdot \mathbf{R})^n$

n = 5

• $\mathbf{I} = \mathbf{l}_a * \mathbf{m}_a + \mathbf{l}_d * \mathbf{m}_d (\mathbf{L} \cdot \mathbf{N}) + \mathbf{l}_s * \mathbf{m}_s (\mathbf{V} \cdot \mathbf{R})^n$

n = 50

• $\mathbf{I} = \mathbf{l}_a * \mathbf{m}_a + \mathbf{l}_d * \mathbf{m}_d (\mathbf{L} \cdot \mathbf{N}) + \mathbf{l}_s * \mathbf{m}_s (\mathbf{V} \cdot \mathbf{R})^n$

Hanyang University CSE4020, Yoonsang Lee

Specular falloff of $(\cos \alpha)^n$

[Demo] Phong Illumination

http://www.cs.toronto.edu/~jacobson/phong-demo/

- Set the value of the first drop down box to "Phong Shading"
- Try changing
 - reflection coefficient and color of ambient, diffuse, and specular
 - specular shininess
 - you can also change object type, light position and background color

Quiz 2

- Go to <u>https://www.slido.com/</u>
- Join #cg-ys
- Click "Polls"
- Submit your answer in the following format:
 - Student ID: Your answer
 - e.g. 2021123456: 4.0
- Note that your quiz answer must be submitted in the above format to receive a quiz score!

Polygon Shading

Shading

- Variation in observed color across an object
 - Strongly affected by lighting

Polygon Shading

- In computer graphics, the term *shading* describes...
 - Variation in surface color due to the illumination model
 - or Variation in pixel color inside a polygon
- The second meaning is what we're dealing with now. I'll use the term *polygon shading* to avoid confusion.
- Polygon shading: The process of determining **each pixel color in a polygon** based on an illumination model

Surface Normal

- A vector that is perpendicular to the surface at a given point
 - A unit normal vector (of length 1) is generally used
- Plays a key role in shading & illumination process
- Diffuse reflection
 - Lambert's Cosine Law
- Specular reflection
 - Laws of Reflection

 $\theta_r = \theta_i$

Face Normal

• How to get the face normal - the surface normal of a polygonal face?

- That's why we need **counterclockwise** vertex ordering
 - The direction of a face normal determines "outside" of the face

Flat Shading

- Use a single normal per polygon
- Calculate color once per polygon
- Fast, but not very desirable for curved shapes
 - Even if we increase the number of polygons, it's still "faceted"

Smooth Shading

• Use a single "averaged" normal per vertex

- Smooth color transition between two adjacent polygons
- Two methods:
 - Gouraud shading
 - Phong shading

Gouraud Shading

• Use a single vertex normal for each vertex

• Calculate color (by illumination) at each vertex

Interpolate vertex colors across polygon
Barycentric interpolation

Henri Gouraud

 $(1944 \sim)$

Gouraud Shading

Gouraud Shading

- Problem: poor specular highlight
 - Specular highlights may be distorted or averaged away altogether

Higher polygon count reduces this artifact

Bùi Tường Phong (1942 – 1975)

• Use a single vertex normal for each vertex

• Interpolate vertex normals across polygon

• Calculate color (by illumination) at each pixel in polygon using the interpolated normal

Phong Shading

Gouraud shading

Phong shading

Phong Shading

- Captures highlights much better
 - The interpolated normal at each interior pixel is more accurate representation of true surface normal at each point
 - Higher quality, but needs more computation

• Not to be confused with Phong's illumination model (developed by the same person)

[Demo] Polygon Shading

- Flat & Gouraud shading
 - <u>http://math.hws.edu/graphicsbook/demos/c4/smooth-vs-flat.html</u>

- Gouraud & Phong shading
 - <u>http://www.cs.toronto.edu/~jacobson/phong-demo/</u>

Normal Vector Transformation

• If a set of points on a surface is transformed by an affine transformation M,

- Tangents are transformed by M.
 - Because the differences of points are transformed by M.

- However, normals should not be transformed by M.
 - Because normals should be perpendicular to tangents.

Normal Vector Transformation

t: tangent vectorn: normal vector

have: $\mathbf{t} \cdot \mathbf{n} = \mathbf{t}^T \mathbf{n} = 0$ want: $M\mathbf{t} \cdot X\mathbf{n} = \mathbf{t}^T M^T X\mathbf{n} = 0$ so set $X = (M^T)^{-1}$ then: $M\mathbf{t} \cdot X\mathbf{n} = \mathbf{t}^T M^T (M^T)^{-1} \mathbf{n} = \mathbf{t}^T \mathbf{n} = 0$

Solution: $X = (M^T)^{-1}$

Lab Session

• Now let's start the lab session.